Exercise 41

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right]
$$

Solution

Use the property of logarithms that allows a difference to be written as a quotient. Then multiply the numerator and denominator by the reciprocal of the highest power of x in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right] & =\lim _{x \rightarrow \infty} \ln \frac{1+x^{2}}{1+x} \\
& =\lim _{x \rightarrow \infty} \ln \frac{1+x^{2}}{1+x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \ln \frac{\left(1+x^{2}\right) \frac{1}{x}}{(1+x) \frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \ln \frac{\frac{1}{x}+x}{\frac{1}{x}+1} \\
& =\ln \frac{\lim _{x \rightarrow \infty}\left(\frac{1}{x}+x\right)}{\lim _{x \rightarrow \infty}\left(\frac{1}{x}+1\right)} \\
& =\ln \frac{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} x}{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} 1} \\
& =\ln \frac{0+\infty}{0+1} \\
& =\ln \infty \\
& =\infty
\end{aligned}
$$

